2002 Vol. 4, No. 2 189-191

Synthesis of (*E*)- α , β -Unsaturated Esters with Total or High Diastereoselectivity from α , β -Epoxyesters

José M. Concellón* and Eva Bardales

Departamento de Química Orgánica e Inorgánica, Facultad de Química Universidad de Oviedo, Julián Clavería, 8, 33071 Oviedo, Spain

jmcg@sauron.quimica.uniovi.es

Received October 11, 2001

ABSTRACT

mixture of diastereoisomers Total or high *E*-selectivity (GC—MS, ¹H NMR)

High stereoselective β -elimination in 2,3-epoxyesters 1 was achieved using samarium diiodide, yielding α , β -unsaturated esters 2, in which the C=C bond is di-, tri- or tetrasubstituted. The starting compounds 1 are easily prepared by reaction of the corresponding lithium enolates of α -chloroesters with aldehydes or ketones at -78 °C. The influence of the reaction conditions and the structure of the starting compounds in the stereoselectivity of the β -elimination reaction is also discussed.

Although deoxygenation reactions of epoxides promoted by SmI_2 to afford alkenes with very poor diastereoselection are well-known, no application of this methodology to α,β -epoxyesters has been published. Moreover, to the best of our knowledge, no selective, general methodology has been developed to deoxygenate noncyclic α,β -epoxyesters to obtain α,β -unsaturated esters with high diastereoselectivity. Several papers have described the transformation of cyclic α,β -epoxyesters into cyclic α,β -unsaturated esters, in which no mixture of Z/E diastereoisomers can be obtained. However, the scarce examples reported starting from noncyclic α,β -epoxyesters afford noncyclic α,β -unsaturated esters in

low yield³ or lead to a mixture of diastereoisomers⁴ or compounds,⁵ while in other papers no information of the diastereoselection is available.⁶ Moreover, taking into account that α,β -unsaturated esters can be easily transformed into α,β -epoxyesters,⁷ the sequence α,β -unsaturated ester $\rightarrow \alpha,\beta$ -epoxyester $\rightarrow \alpha,\beta$ -unsaturated ester can be used as a protection—deprotection methodology of the C=C double bond of α,β -unsaturated esters. For this reason a new general and easy transformation of α,β -epoxyesters into α,β -unsaturated esters with high diastereoselection would be desirable.

Recently we developed a new, easy, and simple highly diatereoselective β -elimination reaction promoted by samarium diiodide and starting from different functionalized

⁽¹⁾ In the best of our knowledge, the scarce papers published contain only one example of this transformation, and only the synthesis of (*E*)-ethyl cinnamate from the corresponding α , β -epoxyester has been described in high yield and with total diastereoselection: Fürstner, A.; Hupperts, A. *J. Am. Chem. Soc.* **1995**, *117*, 4468–4475.

⁽²⁾ By using Zn/AcOH: (a) Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131–6141. By using WCl₆ + BuLi: (b) Krische, M. J.; Trost, B. M. Tetrahedron 1998, 54, 7109–7120. By using CrCl₂: (c) Emmer, G.; Graf, W. Helv. Chim. Acta 1981, 64, 1398–1406. (d) Kehrli, A. R. H.; Taylor, D. A. H. J. Chem. Soc., Perkin Trans. 1 1990, 2067–2070. (e) Ekong, D. E. U.; Olagbemi, E. O. J. Chem. Soc. C 1966, 944–946. (f) Nozaki, H.; Hiroi, M.; Takaoka, D.; Nakayama, M. J. Chem. Soc., Chem. Commun. 1983, 1107–1108. (g) Banerji, J.; Chatterjee, A.; Ghoshal, N.; Das, A.; Sarkar, S. J. Indian Chem. Soc. 1982, 59, 145–149. (h) Bennett, R. D.; Hasegawa, S. Phytochemistry 1982, 21, 2349–2354.

^{(3) (}a) Ameer, F.; Drewes, S. E.; Hoole, R.; Kaye, P. T.; Pitchford, A. T. *J. Chem. Soc.*, *Perkin Trans. 1* **1985**, 2713–2717. (b) Kobayashi, T.; Nitta, M. *Chem. Lett.* **1982**, 325–328. (c) Vedejs, E.; Fuchs, P. L. *J. Am. Chem. Soc.* **1973**, 95, 822–825.

^{(4) (}a) Rosenblum, M.; Saidi, M. R.; Madhavarao, M. *Tetrahedron Lett.* **1975**, *16*, 4009–4011. (b) Bissing, D. E.; Speziale, A. J. *J. Am. Chem. Soc.* **1965**, *87*, 2683–2690.

⁽⁵⁾ Mawson, S. D.; Weavers, R. T. Tetrahedron 1995, 51, 11257-11270.
(6) (a) Frazier, J. W.; Staszak, M. A.; Weigel, L. O. Tetrahedron Lett. 1992, 33, 857-860.
(b) Alper, H.; Des Roches, D. Tetrahedron Lett. 1977, 18, 4155-4158.

^{(7) (}a) Meth-Cohn, O.; Moore, C.; Taljaard, H. T. *J. Chem. Soc., Perkin Trans. 1* **1988**, 2663–2674. (b) Kehrli, A. R. H.; Taylor, D. A. H. *J. Chem. Soc., Perkin Trans. 1* **1990**, 2067–2070.

halohydrins. This is the first general stereoselective β -elimination reaction promoted by SmI₂. In this respect, we have described the diastereoselective synthesis of (Z)-vinyl halides from O-acetylated 1,1-dihaloalkan-2-ols, 8 the preparation of (E)- α , β -unsaturated esters 9 or amides 10 from 2-halo-3-hydroxyesters or amides, respectively, and the obtention of (Z)-vinylsilanes from 1-chloro-1-trialkylsilylalkan-2-ols. 11 Here, we describe a new methodology to obtain (E)- α , β -unsaturated esters with total or high E-selectivity by deoxygenation of α , β -epoxyesters using samarium diiodide (Scheme 1).

Scheme 1. Synthesis of (E)- α,β -Unsaturated Esters

Our first attempts were carried out to establish the reaction conditions of the β -elimination process to obtain α, β -unsaturated esters **2**. Thus, the α, β -epoxyester **1d** was treated with a solution of SmI₂ in THF, at several temperatures (-50 °C, room temperature and reflux of THF). The yield and diastereoisomeric excess (de) of the elimination reaction of **1d** were similar at room temperature and at reflux, whereas **2d** was isolated in lower yield at -50 °C (Table 1, entries

Table 1. Synthesis of (E)- α , β -Unsaturated Esters 2

entry	2 a	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	de	$yield^b$
1	2a	<i>p</i> -MeOC ₆ H ₄	Н	Н	Me	>98	79%
2	$2\mathbf{b}^c$	MeCH(Ph)	Н	H	Me	>98	81%
3	2c	<i>n</i> -Bu	Η	Ph	<i>i</i> -Pr	93	68%
4	$2d^c$	C_7H_{15}	Н	Me	Et	92	80%
5	2d	C_7H_{15}	Н	Me	Et	93	77%
6	$2\mathbf{d}^d$	C_7H_{15}	Н	Me	Et	>98	62%
7	$2e^c$	cyclohexyl	Н	Me	Et	>98	84%
8	2e	cyclohexyl	Η	Me	Et	>98	72 %
9	2f	Ph	Н	Bu	Et	>98	83%
10	2g	p-MeOC ₆ H ₄	Н	Me	Et	>98	90%
11	2h	p-CNC ₆ H ₄	Н	Me	Et	>98	82%
12	2i	MeCH(Ph)	Н	C_6H_{13}	Et	>98	85%
13	$2j^c$	$C_9H_{17}^e$	Η	Me	Et	>98	59 %
14	2k	-(CH ₂) ₅ -		Me	Et		70%
15	21	Ph	Me	Me	Et	61	85%
16	2m	Ph	Et	Me	Et	71	75 %
17	2n	Bn	Me	Me	Et	70	66%

^a Unless otherwise noted, reactions were carried out at room temperature. ^b Isolated yield after column chromatography based on compound 1. ^c The reaction was carried out at reflux of THF. ^d The reaction was carried out at −50 °C. ^e C₉H₁₇: Me₂C=CH(CH₂)₂CH(Me)CH₂.

4-6). Taking into account these results, the remaining reactions were performed at room temperature or at reflux of THF. In general, the yield and degree of purity of **2** was higher at reflux than at room temperature; for this reason

when the elimination reaction afforded other side products at room temperature, the reaction was carried out at reflux. Hence, the reaction of different α,β -epoxyesters **1** with a solution of SmI₂ in THF at room temperature or reflux gave the corresponding di- or trisubstituted (E)- α,β -unsaturated esters **2** in high yield and with total or very high stereoselectivity (Table 1, entries 1–13).¹²

The proposed deoxygenation reaction is general for the preparation of di- or trisubstituted α,β -unsaturated esters. Thus, R^1 can be aliphatic (linear, branched, or cyclic) unsaturated or aromatic (electron-rich or -deficient), R^3 has been also changed (aliphatic and aromatic), and in addition the selectivity and yield were unaffected by the presence of bulky groups R^4 on the carbonyl ester (Table 1, entry 4), in contrast to other elimination reactions. 13

This methodology can be also used to obtain α, β -unsaturated esters **2**, in which the C=C bond is tetrasubstituted. In this case, all reactions were carried out at reflux, the α, β -unsaturated esters **2** were isolated in high yield, and logically, a decrease of the diastereoselectivity was observed (Table 1, entries 15–17).¹⁴

The starting compounds 1 were easily obtained by reaction of aldehydes or ketones with the potassium enolate of α -chloroesters (generated by treatment of α -chloroesters with potassium hexamethyldisilazide at -78 °C) at temperatures ranging from -78 to 25 °C.

Scheme 2. Synthesis of Starting Compounds

The de was calculated on the crude reaction products by ¹H NMR spectroscopy (300 MHZ) and GC-MS. ¹⁵

The *E* stereochemistry in the double bond C=C of the obtained α,β -unsaturated esters **2**, in which the C=C is di-

(13) By example, the diastereoselectivity of the Wittig reaction, to obtain $\alpha.\beta$ -unsaturated esters, decreases with bulky alcoholic groups: Maryanoff, B. E.; Reitz, A. B. *Chem. Rev.* **1989**, *89*, 863–927.

190 Org. Lett., Vol. 4, No. 2, 2002

⁽⁸⁾ Concellón, J. M.; Bernad, P. L.; Pérez-Andrés, J. A. *Angew. Chem., Int. Ed.* **1999**, *38*, 2384–2386.

⁽⁹⁾ Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H. *Angew. Chem.*, *Int. Ed.* **2000**, *39*, 2773–2775.

⁽¹⁰⁾ Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H. *Chem. Eur. J.* **2001**, *7*, 3062–3068.

⁽¹¹⁾ Concellón, J. M.; Bernad, P. L.; Bardales, E. Org. Lett. 2001, 3, 937–939.

⁽¹²⁾ **Representative Experimental Procedure.** A solution of SmI₂ (1.6 mmol) in THF (19 mL) was added, under nitrogen atmosphere, dropwise to a stirred solution of the corresponding epoxyester **1** (0.4 mmol) in THF (4 mL) at room temperature or at reflux. The reaction mixture was stirred for 90 min (rt) or 2 h (reflux), and then the reaction was quenched with aqueous HCl (20 mL of a 0.1 M solution). Usual workup afforded crude α , β -unsaturated ester **2**, which was purified by column flash chromatography over silica gel (10:1 hexane/ethyl acetate).

⁽¹⁴⁾ To the best of our knowledge, no diastereoselective synthesis of tetrasubstituted α,β -unsaturated esters from α,β -epoxiesters has been described.

⁽¹⁵⁾ The $^1\mathrm{H}$ NMR determination was in agreement with the de obtained by GC-MS.

or trisubstituted, was established by comparison of their 1 H and 13 C spectra with authentic samples, as has been previously described in the literature. The E stereochemistry of the C=C double bond of the tetrasubstituted α,β -unsaturated esters 2 was assigned by NOESY experiments (compound 2m).

It is noteworthy that although the starting α , β -epoxyesters were used as mixtures of *cis* and *trans* diastereoisomers, the corresponding α , β -unsaturated esters were obtained with total or very high *E*-selectivity.

The mechanism and stereochemistry may be explained based on the ability of SmI_2 to reduce α -heterosubstituted esters to esters (Scheme 3). Thus, the SmI_2 -promoted

reduction of the C_{α} -O bond of 1 affords an intermediate enolate 3. Chelation of the oxophilic Sm^{III} center of the enolate 3 with the second oxygen atom produces a six-

membered ring.¹⁶ Tentatively we propose a transition state model **A**. If $R^1 > R^2$, the largest group R^1 occupies an equatorial position and the smallest group R^2 an axial position (to avoid interactions with the samarium coordination sphere). This transition state could also explain the total or very high diastereoselectivity observed in the elimination reaction from a mixture of diastereoisomers of **1**. As depicted in **B** (another projection of the same transition state), R^1 and R^3 show a *cis* relationship. Consequently, elimination from **A** affords (*E*)-α, β -unsaturated esters.

In conclusion, an easy, general methodology has been developed to synthesized α,β -unsaturated esters, in which the double bond C=C is di-, tri-, or tetrasubstituted with total or high *E*-diastereoselectity from easily available α,β -epoxyesters, the reaction being promoted by samarium diiodide.

Acknowledgment. We thank Ministerio de Educación y Cultura (PB-EX01-11) and Principado de Asturias (BQU2001-3807) for financial support. J.M.C. thanks Carmen Fernández for her time. E.B. thanks the Universidad de Oviedo and the Principado de Asturias for a predoctoral fellowship. Our thanks to Robin Walker for his final revision of the manuscript.

Supporting Information Available: Experimental procedure of **1**, spectroscopic data of **1** and **2**, ¹³C NMR spectra of **2**, and GC of compounds **2l**, **2m** and **2n**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016894P

Org. Lett., Vol. 4, No. 2, 2002

⁽¹⁶⁾ Similar six-membered ring transition state models have been proposed to explain the selectivity in other reactions of SmI₂: (a) Urban, D.; Skrydstrup, T.; Beau, J. M. *J. Org. Chem.* **1998**, *63*, 2507–2516. (b) Molander, G. A.; Etter, J. B.; Zinke, P. W. *J. Am. Chem. Soc.* **1987**, *109*, 453–463.